Radial Limits of Partial Theta and Similar Series
نویسنده
چکیده
We study unilateral series in a single variable q where its exponent is an unbounded increasing function, and the coefficients are periodic. Such series converge inside the unit disk. Quadratic polynomials in the exponent correspond to partial theta series. We compute limits of those series as the variable tends radially to a root of unity. The proofs use ideas from the q-integral and are elementary.
منابع مشابه
On the Difference of Partial Theta Functions
n≥0(−1) nq (n−1)n 2 xn are called partial theta functions. In his lost noteboook, Ramanujan recorded many identities for these functions. A few years ago Warnaar found an elegant formula for a sum of two partial theta series. Subsequently, Andrews and Warnaar established a similar result for the product of two partial theta functions. In this note we discuss the relation between the Andrews–War...
متن کاملThermo-elastic analysis of a functionally graded thick sphere by differential quadrature method
Thermo-elastic analysis of a functionally graded hollow sphere is carried out and numerical solutions of displacement, stress and thermal fields are obtained using the Polynomial differential quadrature (PDQ) method. Material properties are assumed to be graded in the radial direction according to a power law function, ho...
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کاملPARTIAL THETA FUNCTIONS AND MOCK MODULAR FORMS AS q-HYPERGEOMETRIC SERIES
Ramanujan studied the analytic properties of many q-hypergeometric series. Of those, mock theta functions have been particularly intriguing, and by work of Zwegers, we now know how these curious q-series fit into the theory of automorphic forms. The analytic theory of partial theta functions however, which have q-expansions resembling modular theta functions, is not well understood. Here we con...
متن کاملRamanujan’s Radial Limits
Ramanujan’s famous deathbed letter to G. H. Hardy concerns the asymptotic properties of modular forms and his so-called mock theta functions. For his mock theta function f(q), he asserts, as q approaches an even order 2k root of unity, that we have f(q)− (−1)(1− q)(1− q)(1− q) · · · ` 1− 2q + 2q − · · · ́ = O(1). We give two proofs of this claim by offering exact formulas for these limiting valu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015